Quantcast
Channel: SCN : All Content - SAP BusinessObjects Predictive Analytics
Viewing all articles
Browse latest Browse all 836

Shell Script Question re: Cut Training Policy

$
0
0

My shop uses KXEN version 5.1.3, and I've inherited an older shell script that defines the CutTrainingPolicy as "random". Here is a piece of the code:

 

createModel Kxen.SimpleModel newmodel
newmodel.getParameter ""
newmodel.changeParameter Parameters/CutTrainingPolicy "random"
newmodel.validateParameter

newmodel.pushTransformInProtocol Default Kxen.RobustRegression
newmodel.pushTransformInProtocol Default Kxen.ConsistentCoder

newmodel.openNewStore Kxen.FileStore c:/temp
newmodel.newDataSet Training train.txt

 

etc.

 

A user has requested that I test a custom cutting strategy without test, so I set it up in the GUI and exported the script. It now looks like:

#GENERATED_BY_KXEN
# KXEN Shell Script
# generated on 2014-08-13 17:16:07
# by KXEN version 5.1.3

default STORE_USER ""
default STORE_PWD ""
default DESC_USER ""
default DESC_PWD ""


#Declaring the 'ESTIMATION' store and space
default ESTIMATION_STORE_TYPE "Kxen.FileStore"
default ESTIMATION_STORE_NAME "D:\DATA/199710"
default ESTIMATION_STORE_USER $STORE_USER
default ESTIMATION_STORE_PWD $STORE_PWD
default ESTIMATION_STORE_ALIAS myEstimationStore
default ESTIMATION_SPACE "model219.txt"

 

#Declaring the 'VALIDATION' store and space
default VALIDATION_STORE_TYPE "Kxen.FileStore"
default VALIDATION_STORE_NAME "D:\DATA/199710"
default VALIDATION_STORE_USER $STORE_USER
default VALIDATION_STORE_PWD $STORE_PWD
default VALIDATION_STORE_ALIAS myValidationStore
default VALIDATION_SPACE "model219.txt"

 

default MODEL_SAVE_STORE_TYPE "Kxen.FileStore"
default MODEL_SAVE_STORE_NAME "."
default MODEL_SAVE_STORE_USER ""
default MODEL_SAVE_STORE_PWD ""
default MODEL_SAVE_NAME "target_model219.bigtrain"
default MODEL_SAVE_SPACE "target_model219.kxen"
default MODEL_SAVE_COMMENT "The model 'target_model219.bigtrain' has been saved"


createModel Kxen.SimpleModel m
m.getParameter ""
m.changeParameter Parameters/CutTrainingPolicy "random"
m.setName "target_model219.bigtrain"
m.validateParameter

etc


I can see that the ESTIMATION and VALIDATION data sets are now defined, but the policy still says "random". Does this matter? Should I override the value? I can't find anything in the API docs.

 

Thank you,

Scott


Viewing all articles
Browse latest Browse all 836

Trending Articles